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The equilibrium configuration of a slowly rotating self-gravitating perfectly 
conducting inviscid liquid, in the presence of a small poloidal magnetic field, is 
considered for a case where the electric current is a simple function of the distance 
from the axis of rotation. Owing to the coupling of the magnetic field with the 
rotation the electric current may reverse direction. This could make the magnetic 
field zero on certain surfaces and impose restrictions on the parameters of the 
problem. A perturbation expansion of the nearly spherical surface of the liquid 
is constructed. 

1. Introduction 
The problem of the mechanical equilibrium of a perfectly conducting self. 

gravitating liquid in the presence of a magnetic field, owing to its astrophysical 
applications, has been considered by several authors. For obvious reasons all 
investigations have been restricted to the case where the velocity and magnetic 
field have axial symmetry. Chandrasekhar (1956) expressed the equations 
governing the general case of axial symmetry in a most convenient form. Special 
solutions of these equations have since been considered by several authors for 
various configurations. For example, some cases were investigated by means of 
the variational method by Woltjer (1959) and Wentzel (1960). These solutions, 
however, are based on the existence of surface currents. More recently Sozou 
(1972) showed that if the effects of surface currents are ignored a solution exists 
where the fluid is a Maclaurin spheroid. The magnetic field enables the interior 
of the spheroid to have a differential angular velocity. 

The more realistic problem where the magnetic field is continuous at  the 
surface is difficult. For this reason analytic solutions of this problem are restricted 
to the case where the magnetic field is weak and the fluid is rotating slowly and 
thus has a nearly spherical surface. Ferraro (1954) was the first to consider this 
problem. He considered the case of a liquid star rotating slowly with constant 
angular velocity in the presence of a weak poloidal magnetic field, finite every- 
where, and showed that the magnetic field increases the small eccentricity of 
a rotating Maclaurin spheroid. Roberts (1955) attempted to extend Ferraro’s 
work and constructed a series expansion for the liquid surface in the presence of 
Ferraro’s field. As was pointed out by Wentzel (1960), however, the Roberts 
series, excepting the first-order term, is incorrect. 
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Chiam & Monaghan (1971) Iconsidered the structure of a weak poloidal 
magnetic field in a star for the case where there is a dipole field at  the origin. 
Their approximate solution depends on eigenvalues and is not unique. Unique 
solutions can be obtained when the electric current density is an explicit function 
of the spatial co-ordinates and does not depend on the boundary shape. For a 
liquid rotating about an axis in the presence of a poloidal magnetic field this 
happens only when the electric current density is proportional to Aw - Kw3, 
where A and K are constants and w is the distance from the axis of rotation. The 
case K = 0 is that considered by Ferraro. The part Kw3 of the current is entirely 
due to the differential rotation of the fluid. The magnetic field associated with the 
case A + 0, K $: 0 may be considered as a generalized Ferraro field. In this note 
we consider the effect of this generalized field on the equilibrium configuration 
of a nearly spherical, self-gravitating mass of liquid and show that a series 
expansion may be constructed for the free surface of the liquid. 

2. Equations of the problem 
We consider a perfectly conducting incompressible fluid of density p occupying 

a finite region of space. Our analysis refers to a steady-state axisymmetric con- 
figuration with the axis of symmetry along the z axis of a cylindrical polar 
co-ordinate system (w, 4, 2 ) .  We assume that the fluid velocity v has only an 
azimuthal component and that the magnetic field B lies entirely in meridian 
planes containing the axis of symmetry, that is, we assume that 

where f is a function of position and x is the magnetic stream function. 

(momentum equation) is satisfied when x satisfies the equation 
It was shown by Ranger (1970) that i f f =  f(x) the equation of motion 

D2x + PP0w4f = POW2F(X), (3) 

where po is the magnetic permeability of the fluid, F is an arbitrary function and 
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Equation (3) is a special case of a more general solution considered by 
Chandrasekhar (1956). 

On integrating the momentum equation we find that the pressure p and 
gravitational potential rR of the fluid are related by 

$3 + p a  = $pwir2f2 - p y x )  ax. (4) 

Since at the free surface of the fluid p is zero, we must have 

pa, = ~ p w ~ f 2 ( x s )  -/'*IQ) ax+ constant, 

where s denotes a surface value. 
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The electric current j has only an azimuthal component and is given by 

A 1  A 
poj = V x B = poj+ = -D2x+ = V 

w 

Thus if we assume that B is entirely due to the electric currents in the fluid 

or 
x = -&, p‘”’, 2’)cos ($4 - $4’) d7’ 

47r )r - r’) 3 
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(7) 

where the integration is taken over the volume of the fluid, r denotes the radial 
distance from the origin and a prime refers to the value of the quantity in dr‘. 

Equations (3) and (6) show that the electric current is an explicit function of 
w and z provided that 

F ( x )  = A ( 8 )  

and f dfldx = K / p ,  or f = 2Kx/p + 01, (9) 
where A ,  K and wo are constants. If we now make use of (3) and (6)-(9), after 
a little algebra, ( 5 )  becomes 

( 10) 
or 

-pQ,- ( A - w ~ K ) x + & ~ ~ w ~  = constant, 

d7’ p o ( A ~ , -  K 4 )  (Awl- K d 3 )  cos ($,- 4 ’ ) d ~ ’  O J ~ E J ~  +- = constant, s-+ Ir-r‘l 47rp2G s lrs-r’l 2PQ 
(11)  

where Q is the gravitational constant. Roberts (1955) considered the special case 
K = 0, wo = 0 and expanded the integrals occurring in ( 1  1) in terms of Legendre 
polynomials. He then restricted his analysis to the case where the magnetic 
energy is much less than the gravitational energy of the fluid and constructed 
a series expansion for the nearly spherical surface of the fluid. As was pointed 
out by Wentzel (1960), Roberts’s expansion of the integrals in (1 l) ,  in terms of 
Legendre polynomials, is incorrect and consequently his series for the fluid 
surface is also incorrect except for the first-order term. 

3. Solution for a nearly spherical boundary 
Equation (11) is a rather complicated equation and cannot be tackled, in 

general, except numerically. For this reason we shall restrict our analysis to the 
case where the magnetic and kinetic energies of the system are much less than its 
potential energy, and the fluid surface is nearly spherical. For this case it is con- 
venient to express 9, x and r, in terms of Legendre polynomials and, in order to 
avoid integrations, use (10) instead of (11) .  Equation (10) is solved by means of 
a regular perturbation as follows. 

For a nearly spherical surface of approximate radius a we assume that 
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where A = 2apnJG4, E is a small quantity and A,, A, and A, are constants of order 
unity. Using spherical polar co-ordinates ( r ,  8,$) we set 

yS = R ( p )  = a[l+sCaliP,(p)+e2Z;a2,P,(p)+ ...I 
(i = 2,4,6; j = 2,4, . . ., l Z ) ,  (13) 

0 = C + ~ n p G [ r 2 + € Z ; b l ~ r ~ ~ + € 2 C b , , r ~ ~ +  ...I, (14a) 

Q = - $npa3G[r-l+ Er-lCclir-ie + ~2r-~(c, ,  + Cc,,r-jP,) + . ..I, (14b) 

x = (1 -p2)pO[dllr2++6Ar4 -&Kr6+(d13r4+&&r6)P~ 

+ c(d2,r2 + d2,r4P; + . . . + d2,rlnP;) + . . .], (15 a) 

where C is a constant, P, is a Legendre polynomial of degree n, ,u = cos 8, (14 a) 
and (1 5 a) hold for the fluid region and (14 b )  and (15 b)  for the region exterior to 
the fluid. The terms involving A and K in (15) belong to the particular integral 
of (3) and the other terms belong to the complementary function of (3). 

The various constants in (13)-(15) are determined from the fact that a t  the 
boundary, given by (13), S Z ,  x and their normal derivatives are continuous, and 
(10) is satisfied. The continuity of the normal derivatives of f2 and x, on the 
surface given by (13), coupled with the continuity of SZ and x, to a certain order 
in B ,  implies continuity of anfar and ax/&. 

First approximation 

The continuity of Q and asl/ar to order 6 requires that 

6a1, = - 5b12 = 10a-2c12, 

2a14 = - 3a2b1, = 6a-4c14, 

6a16 = - 13a4b16 = 6a-6C16, 

and the continuity of x and ax/& to order e* requires that 

11 - Aa2 +&,Ka4, d,, = - &Ka2, 
el, = -&-Ka9. (17 )  

- _ _  
ell = -&Aa5+&Ka7, 

Equation (9) is a manifestation of the law of isorotation and implies that 
individual field lines, given by x = constant, rotate with (individual) constant 
angular velocity. Thus the fluid surface, where x is continuous and not constant, 
has a differential angular velocity. 

If we now note that a," = R2(1-p2) and, using (12), (16) and (17) ,  substitute 
(13), (14) and (15) into (lo), after a little algebra we obtain, to order E ,  an equation 
of the form A, Pz +A, P4 +A6 P6 = constant, 

where the A's are constants involving A,, A,, A, and linear combinations of a12, 
aI4 and a16. On equating the A's to zero we find that 
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If A, = 0, that is i f f  = wo and the fluid is rotating with constant angular 
velocity, 

and the equation of the free surface is 

a12 = - 1 A 2 - 5 A 2  
3 1 2 3, a14 = a16 = ‘3 

R = a[ l  - (+A; + ;A;) P2(p)], 

which is that of a planetary ellipsoid. This is the case considered by Perraro 
(1954).  When A, + 0, aI6 and, except for the case 143h1 = 89h2, aI4 are not zero 
and the free fluid surface is not that of a planetary ellipsoid. Owing to the coupling 
of the angular velocity with the magnetic field the right-hand side of (9) will not 
be positive unless constraints are imposed on A,, A, and A,. In  the fluid region 
the ibst approximation to x may be written as 

x = &uor2(1 -p2) [42a4K- 105a2A+ (63A - 36a2K)r2 

+ 10K.I”I + K(45a2 - 35r2) r2( 1 - p2)]. (19) 

Kx and the right-hand side of ( 9 )  will be positive irrespective of the value of w,, 
if for a > r the expression 

42a4K - 105a2A + (63A - 36a2K)r2 + 10Kr4 (20)  

is positive for positive K and negative for negative K .  
Let us consider the case K > 0 .  The minimum of (20) occurs when 

r2 = (36a2K - 63A)/20K. 

Expression (20)  will be positive for 0 < r < a (i) if it is positive at  r = a and the 
minimum occurs a t  r > a, that is if 

16Ka2-42A > 0, 16a2K-63A > 0, (21) 

( 2 2 )  

or if (ii) its minimum value is positive and (20)  has no real roots, that is if 

40K(42a4K - 105a2A) - (36a2K - 63A), > 0. 

The inequalities ( 2 1 )  are satisfied if A < 16a2K/63. Inequality (22 )  is satisfied if 

Therefore, if K > 0, (20)  will be positive for 0 < r < a when A < 0-356a2K. 
Similarly when 0 > K ,  (20) will be negative for 0 < r < a provided that 

A > -0.356a2K. 

Thus Kx will be positive provided that 

K A  < 0*356a2K2. (23) 

Note that if (23 )  is violated x is not necessarily of constant sign. A change in 
sign of x implies a change in the direction of the magnetic field. Thus, depending 
on the magnitude of jAJ relative to 1111, B may have a somewhat complex 
structure. 

If, to the first-order approximation, we express R ( p )  as a third-degree poly- 
nomial in p2 and make use of (23 )  we can show that, when oo = 0,  R(p)  decreases 
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monotonically from p = 0 to p = 1. It can also be shown that when the above 
inequalities are not satisfied and K X  becomes negative the magnitude of wo, 
which must be non-zero to make the right-hand side of (9) positive, is such that 
R(p)  must decrease monotonically from p = 0 to / L  = 1. Thus the fluid surface, 
though not spheroidal, is still of a planetary form with its minimum radius at  the 
poles and maximum radius at  the equator. 

Recond approximation 
Since 8x@r is continuous to order €3’ the continuity of x to order c?? requires that 

d 2a = e2i (i = 1,3 ,  ..., 9). (24) 

On using (17) and (24) we find that the continuity of ax/& to order d requires that 

2 (4% + 3) aZn d2(2n+&n+l + (Au2 - +Ka4 + &Ka4P;) (ul,P, + a14 P4 + a&,) = 0. 

Equation (25) may be expressed as an equation of the form 

4 

0 

(25) 

Ao+A2P2+ ... ASPs = 0 

or as a fourth-degree equation in p2. dZ1, dZ3’ . . ., d,, can be evaluated by setting 
A,  = A ,  = . . . = A,  = 0 or by equating to zero the coefficients of each power of p .  

The continuity of s1 to order e2 implies that 

- 3(u1,P2+a14P4+u1,P6)2+~(ui-2b2i+ 2u-b2,)P,, = constant 

(i = 2,4,  ..., 12). (26) 
This may be expressed in the form 

and on equating to zero the A’s we obtain six equations of the form 

ai-%,,+ 2u-b2, = f2, (i = 2’4, . .., 12), ( 2 7 )  

where thef’s are constants. On doing a similar analysis for the continuity of 
a s 2 p  and the satisfaction of (lo), to order e2, we obtain 

c20 = 920’ (28) 

6a2,+iu~-2b,,-2(i+1)u-~c,,  = g,, (i = 2’4, ...’ 12) (29) 

and 2aZt + ai-,b,, = h,,, (30) 

where the g’s and the h’s are constants. cz0 is readily determined from (28); c,,, is 
needed for the next order approximation. uZi, b,, and czi are easily calculated 
from (27)’ (29) and (30). The main difficulty is the tedious computation of fzi, 
gZi and h,{. For this reason we restrict our computations for this and the third 
approximation to the special case where K = 0 = A,. Then 

a14 = uI6 = 0 = uSj = b,j = czj 

d,, = a-3e2, = &AaZu12, d,, = ~ - ~ e , ,  = -- 316Aa127 

(j = 6,8,10,12),  

and 

dZi = eZi = 0 (i > 3). 
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After a little algebra we find that 

a22 = + ?A:) ~ 1 2 ,  a24 = - (&?&A: + %A;) ~ 1 2 ,  

b - - (=A2++EA;)al2, a2bZ4 = -3- .A2a 2 2 -  2 4 5  1 1 2 2 5  1 12 ,  

cz0 = $a:,, a-*cZ2 = (&A2,++A~)aI2, r 4 c z 4  = - (&'&Az 1 2 2 5  1 + = A ~ ) u  14 3 12' 

11 1 

Third approximation 

The complexity of the algebraic operations involved increases very rapidly with 
the order of the approximation and the process of reducing the expressions 
obtained to Legendre polynomials is lengthy and tedious. For this reason this is 
the last approximation we shall carry out. On carrying out an analysis similar to 
that for the second approximation we find that 

d31= (&$A: + )A;) Aa2a12, d33 = - (&+&A: + s A ; ) A ~ 1 2 ,  
12A: Aa-2a1, 

, e31 = ( M A :  ++A:)Aa5a12, 13475 
a,, = - 

e33 = a7d33, e35 = (&A2,++&)Aa9ul2. 
From the continuity of CI and X@r and the satisfaction of (10) to order e3 we 
obtain a set of equations in a,+ b,$ and cgi having a structure identical to that of 
(27)-(30). The unknowns u3i, b3i and cai and constants f3i, g3i and h3j occupy the 
positions corresponding to aZi, bZi,  cZi,  . fZi ,  g2i and hZi, respectively. [It is easy to 
show that for an nth-order approximation an<, bni, cnl and the constants fn i ,  gni 
and hni satisfy a set of equations having a structure identical to that of (27)-(30).] 
After some algebra we find that 

1 [;;I = [ 
[ u2q = [ - 0.0742 - 0.650 0 ]A, 

0.2511 3.559 12-98 

-0,0961 - 2.017 - 10.77 A, 

0.0095 0.473 3.65 

- 0.3431 - 4.833 - 17.45 

a4b36 - 0.0052 0 0 

- 0.1406 - 2.150 - 8-14 [;:(2]=[ - 0.1625 0.0768 - :::;I 1.264 - ;:4j 5.51 A, 

a-6c36 0- 1054 

where A is the column vector (a12A:, ul2h~A,2, a,,hi). 
Roberts, who dealt with the case A, = I ,  A, = A, = 0,  expressed R in the form 

R,( I + alp2 + u2p4 + a,p6 + . . . ), where R, is a constant and the a's are power 
series in e. From our data it is easy to show that the correct expression for the 
Roberts series, to order €3, is 

R = Ro[l + ( -  0.56- 0 * 3 1 2 ~ 2 + 0 * 0 6 6 8 ~ 3 ) ~ 2 +  (0.246~2+0*133~3)~4-0.0458€'p6]. 

We note that only the coefficients of ei,uZi in this series are the same as the corre- 
sponding coefficients in the series constructed by Roberts. 
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